論文が SODA21 (Symposium on Discrete Algorithms) に 2本採択されました。
実世界に現れるネットワーク上の解析は、そのネットワーク上での様々な現象 (例えば情報拡散など)の振る舞いを知る上で大きな手がかりとなるため非常に重要な研究トピックの一つとなっており、ランダムウォークなどの手法が用いられることが多々あります。
また、実世界に現れるネットワーク (例えばSNSのネットワーク, 化学反応ネットワーク, 携帯電話の基地のセルラネットワークなど) は時間と共にそのグラフ構造が変化します。
この背景を踏まえ、時間とともに変化する動的なネットワーク上でのランダムウォークを理論的に解析するというのが本論文の主題となります。
実は動的なネットワーク上のランダムウォークは幾つか既存研究があるのですが、それらのほとんどは、辺だけが動的に変化するネットワークを対象としています。
というのも、ネットワーク上でランダムウォークを評価する際には、全頂点を訪問するのに必要な時間 (cover time) 、特定の頂点を訪問するのにかかる時間 (hitting time) 、定常分布に収束するまでにかかる時間 (mixing time) などの指標が基本的です。しかし頂点数が動的に変化するようなネットワークに対してはこれらの指標は定義できない(例えば cover time はどうする?)ため、何を解析していいのかがよく分かりませんでした(つまり、ランダムウォークをしている最中にも頂点が増えていくことがあるので、全頂点を訪問するという概念がよく分かりません)。
本論文では、頂点が動的に増え続けるグラフ (growing graph) 上のランダムウォークを評価する指標として、「時刻1からnまでのランダムウォークでカバーされない頂点の個数」を見ることを提案し、様々なタイプのグラフに対してその個数の期待値の上下界を導出しました。
0 件のコメント:
コメントを投稿