1. 導入
重みなし無向グラフ $G=(V,E)$ に対し二頂点$u,v$間の距離 $\mathrm{dist}(u,v)$ を最短経路長とします. このとき, $G$の直径 $\mathrm{diam}(G)$ は $\mathrm{diam}(G):=\max_{u,v\in V}\mathrm{dist}(u,v)$ で定義されます.
本記事のトピックは$n$頂点$m$辺グラフ$G$が与えられた時にその直径$\mathrm{diam}(G)$を計算する問題の計算量です. なお, 計算モデルは$O(\log n)$-word RAMを仮定します.
各頂点からBFSをすることによって$O(mn)$時間で計算することができます. 従ってこれよりも高速に計算できるかが焦点になります.
グラフの直径の計算は精緻な計算量(fine-grained complexity)においてかなり活発に議論されているトピックで, 直径3以下のグラフが与えられた時にその直径が$2$であるか$3$であるかを$O(m^{2-\epsilon})$時間で判別することはSETHと呼ばれる仮定の下では不可能であることが証明されています ($\epsilon>0$は任意の定数)[2]. すなわち, SETHを仮定すると直径の1.49近似を$O(m^{2-\epsilon})$時間で計算できないので, 例えば疎なグラフ ($m=O(n)$) では各点BFSによる$O(n^2)$時間アルゴリズムが最適であることを意味します. ここで, 直径の$c$近似 ($c>1$) というのは直径の$1/c$倍以上の値を出力することを意味します (例えば最大カットなどの文脈では$c^{-1}$近似の言い回しをよく使いますが, 直径近似研究の文脈では$c$近似と言うことが多く, 本記事もそれにならいます). ですので1.49近似アルゴリズムがあれば, 直径3のグラフに対してそのアルゴリズムを走らせると出力値は$\geq 3/1.49>2$となるため, 直径2と直径3のグラフを区別することができます.
それでは, SETHの下での近似困難性はタイトなのでしょうか? 具体的には, 疎なグラフに対し$O(n^{1.99})$時間で直径の1.5近似が計算できるかどうかが気になります.
まず, 与えられるグラフ$G$が木である場合を考えてみます. このときはよく知られたdouble sweepと呼ばれる方法を使えば$O(m)$時間で直径の厳密値を計算できます. また, 一般グラフに対して適用すると, 直径の2近似が$O(m)$時間で計算できます.
本記事ではまず, Aingworthら[1]による$\tilde{O}(m\sqrt{n}+n^2)$時間で直径の"ほぼ"1.5近似を計算するアルゴリズムを紹介します. 具体的には彼らのアルゴリズムは $\lfloor 2/3 \mathrm{diam}(G) \rfloor \leq D \leq \mathrm{diam}(G)$を満たす値$D$を出力します. なお, 乱択を許しちょっと修正することによってAingworthらのアルゴリズムと同じ条件を満たす値$D$を$\tilde{O}(m\sqrt{n})$時間で出力する乱択アルゴリズムが知られています[2].
2. Aingworthらのアルゴリズム
アルゴリズム
1. 各頂点$v\in V$に対しBFSを行い$v$に近い順に頂点を$\sqrt{n}$個選び$S_v$とする (BFSを行い$\sqrt{n}$個の頂点に訪問したら途中で打ち切るようにする). なお, $v\in S_v$とする.
2. ステップ1で得られた集合族$(S_v)_{v\in V}$に対し, サイズ$O(\sqrt{n}\log n)$の hitting set $H\subseteq V$ を計算する (つまり, $H$は全ての$v\in V$に対し$H\cap S_v\neq\emptyset$を満たし, かつ$|H|=O(\sqrt{n}\log n)$を満たす集合. 存在性は後で示します).
3. $H$の各頂点$h\in H$に対し, $h$を始点としたBFSを行い, 全ての$h\in H,v\in V$に対し$\mathrm{dist}(h,v)$を計算する. その後, $D_1:= \max_{h\in H,v\in V}\mathrm{dist}(h,v)$とする.4. $H$から最も遠い頂点を$u$とする. つまり$u$は$\min_{h\in H}\mathrm{dist}(h,v)$を最大にする$v$である.5. ステップ4で得られた頂点$u$に対し, 各$x\in S_u$を始点としてそれぞれBFSを行い, 得られた距離の中での最大値を$D_2$とする. すなわち, $D_2:= \max_{x\in S_u,v\in V}\mathrm{dist}(x,v)$. 最後に$\max\{D_1,D_2\}$を出力.計算時間:
- ステップ1では各頂点に対してBFSを行うので, 各$v\in V$に対し$O(|E(G[S_v])|)=O(n)$時間かかるので計$O(n^2)$時間です.
- ステップ2を考えます. まず存在性を議論します. 各頂点を独立に確率$q:=\frac{2\log n}{\sqrt{n}}$で選んで得られるランダムな頂点部分集合を$R$とします. このとき$\mathrm{E}[|R|]=2\sqrt{n}\log n$であって, Chernoff boundにより$|R|$は高確率 (具体的には確率$1-n^{-1}$で) $|R|=O(\sqrt{n}\log n)$となります. また, 固定した頂点$v\in V$に対して「$S_v$の全ての頂点が選ばれない」確率は
$(1-q)^{|S_v|}\leq \exp(-q|S_v|)=\exp(-2\log n)=n^{-2}$
なので, 確率$1-n^{-2}$で$R$は$S_v$の頂点を一つ以上含みます. 従って, union boundにより確率$1-1/n$で$R$は hitting set になっています. 以上より, $R$は高確率でサイズ$O(\sqrt{n}\log n)$の hitting set になってます. もし条件を満たすhitting setが存在しないならばこの確率は$0$にならなければいけないので, 存在性を示せたことになります. また, ランダムにとってくればほぼ確実に条件を満たすhitting setになっているので, 乱択を許せば$O(n)$時間でステップ2を計算できます. また, greedyにやれば ($H=\emptyset$からスタートして$S_{v_1}$の頂点を一つ選んで$H$に追加し, 暫定の$H$がhitしていないような$S_{v_2}$を選んで...を繰り返す) 条件を満たすようにできます.
-ステップ3は$O(|H|m)=O(m\sqrt{n}\log n)$時間で計算できます.
-ステップ4はステップ3の情報を使えば計算できます.
-ステップ5は単一始点BFSを$\sqrt{n}$回行うので$O(m\sqrt{n})$時間で計算できます.
以上より, 全体の時間計算量は$O(m\sqrt{n}\log n+n^2)=\tilde{O}(m\sqrt{n}+n^2)$です.
近似率の解析
アルゴリズムの出力を$D=\max\{D_1,D_2\}$とします. 単純のため, $\mathrm{diam}(G)$は3の倍数とします. 直径を達成する二頂点を$a,b\in V$とします (つまり$\mathrm{dist}(a,b)=\mathrm{diam}(G)$).
二つのケースを考えます:
(1). ある $h\in H$, $v\in V$ が存在して $\mathrm{dist}(h,v)\geq \frac{2}{3}\mathrm{diam}$ がなりたつならば, $D_1$が直径の1.5近似になっているので大丈夫です.
(2). 全ての$h\in H$, $v\in V$に対して $\mathrm{dist}(h,v)<\frac{2}{3}\mathrm{diam}$が成り立つとします. ステップ4で計算した頂点$u$に対し, $\ell:=\min_{h\in H}\mathrm{dist}(u,h)$とすると, $u$の定義より任意の$v\in V$は距離$\leq\ell$で$H$内のいずれかの頂点にたどり着くことができます. ここで$\mathrm{dist}(a,h)\leq \ell$を満たす頂点$h\in H$をとります. すると三角不等式より
$\mathrm{diam}\leq\mathrm{dist}(a,h)+\mathrm{dist}(h,b)<\ell+\frac{2}{3}\mathrm{diam}$,
すなわち $\ell>\frac{\mathrm{diam}}{3}$ を得ます (下図). また, $H$ は $(S_v)_{v\in V}$の hitting set であるため, 特に $H \cap S_u \neq \emptyset$ です. 従って (*)$u$ から距離$\leq\frac{\mathrm{diam}}{3}$ なる頂点は全て$S_u$に属しているはずです (行間補足: $S_u$ は $u$から近い順に頂点を取っていて, 距離$\ell>\frac{\mathrm{diam}}{3}$ だけ離れている頂点 ($H$との共通部分) も取っているのでそれより近い頂点は全て$S_u$に入っていなければならない).
ここで, $D_2 < \frac{2}{3}\mathrm{diam}$と仮定します. このとき, $D_2$の定義より, 全ての頂点は$u$から距離$<\frac{2}{3}\mathrm{diam}$となっています. 次に, $\mathrm{diam}=\mathrm{dist}(a,b)\leq \mathrm{dist}(a,u)+\mathrm{dist}(u,b) < \mathrm{dist}(a,u)+\frac{2}{3}\mathrm{diam}$ より, まとめると $\frac{1}{3}\mathrm{diam}<\mathrm{dist}(u,a) < \frac{2}{3}\mathrm{diam}$ を得ます.
最短$ua$経路上の頂点であって, $u$からの距離がちょうど$\mathrm{diam}/3$となる頂点を$p$とします. $\mathrm{dist}(a,u)=\mathrm{dist}(a,p)+\mathrm{dist}(p,u)<\frac{2}{3}\mathrm{diam}$となるため, $\mathrm{dist}(a,p)<\frac{1}{3}\mathrm{diam}$です. さらに, $p$の取り方から主張(*)より, $p\in S_u$です.
三角不等式より,
$$\mathrm{diam}=\mathrm{dist}(a,b)\leq \mathrm{dist}(a,p)+\mathrm{dist}(p,b)<\mathrm{dist}(p,b)+\frac{1}{3}\mathrm{diam} $$
よって, $D_2\geq \mathrm{dist}(p,b) > \frac{2}{3}\mathrm{diam}$ となってしまい仮定に矛盾します. よって$D_2\geq \frac{2}{3}\mathrm{diam}$ となります (証明終).
ちょっとした改善
感想
賢すぎて草
参考文献
[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999 (Preliminary version is in SODA96).
[2] L. Roditty and V. V. Williams, Fast Approximation Algorithms for the Diameter and Radius of Sparse Graphs, STOC13.
0 件のコメント:
コメントを投稿