グラフ$G$に対して
を$G$の最大平均次数 (maximum average degree) と言います. ここでグラフ$H$に対し$||H||$は$H$の辺数, $|H|$は$H$の頂点数を表します.
頂点$v$に対して$d(v)$で$v$の次数を表すことにすると, 握手補題より$2||H||=\sum_{v\in V(H)} d(v)$となるので, $\frac{2||H||}{|H|}$は$H$の平均次数を表しています. この値はグラフの「疎っぽさ」を表すような値になっていて, 色々と興味深い結果が知られています. 実は最小カットを二分探索の判定として用いることによって多項式時間でこの値を計算することが出来ます.
$\mathrm{mad}(G)$はグラフ理論の有名な本Sparistyにも重要な指標の一つとして紹介されていて, 次のような事実が(証明なしに)紹介されています.
$\chi(G)\leq \lfloor \mathrm{mad}(G) \rfloor+1$.
つまり$\mathrm{mad}(G)$を使って彩色数$\chi(G)$を上から抑えることができます. 非自明な感じがするので今回はこの事実の証明を載せたいと思います. 内容としては$\chi(G)\leq \mathrm{mad}(G) +1$を示しています(床関数をとっても本質的には変わらないので).
(この証明は私が考えたものなので, 他にもっとスマートな証明を知っている方がいらしたら教えていただければ幸いです).
[1] A Fast Parametric Maximum Flow Algorithm and Applications, G. Gallo, M.D. Grigoriadis, R. E. Tarjan (1986)
理論計算機科学 (Thoerotical Computer Science) の色んな定理やアルゴリズムを紹介していきます. 基本的には日本語の資料がほとんどないような知見を解説していきます.
2017年7月1日土曜日
登録:
コメントの投稿 (Atom)
Håstadのスイッチング補題
回路計算量の理論における重要な結果の一つである Håstadのスイッチング補題 を紹介します. 簡潔にいうとこの補題は, 99%の変数をランダムに固定することによってDNFの決定木が小さくなることを主張する結果です. 応用としてparity関数に対する$\mathrm{AC}^0...
-
0. 概要 本記事では ランダムグラフ理論の動機と応用 ランダムグラフ理論のさわり ランダムグラフの面白い定理 について書きます. 1. ランダムグラフ理論の動機と応用 ランダムグラフ理論の主な動機としては 「とある性質Pを満たすグラフ...
-
0. 概要 グラフマイナー定理とは 有限グラフの全体は, マイナー順序によってよい擬順序になっている (well-quasi-ordered) という定理です. ...さてこれは何を言ってるんでしょうか. 本記事では現代のグラフ理論において最も重要な定理の一つで...
-
1. 全点対最短経路問題の計算量の外観 グラフ $G$ が与えられたときに 全点対最短経路 ( APSP : all pair shortest paths)を求めたいときがあります. そんなときはほとんどの人がワーシャル・フロイド法または各点ダイクストラなどを使うかと...
0 件のコメント:
コメントを投稿