2017年7月6日木曜日

有限加法族の分割

有限加法族とは, 有限集合$E$上のσ-加法族 $\mathcal{G}\subseteq 2^E$ でとなるものです. 有限加法族を台集合の分割を用いて表現する定理を証明します.
(おそらく既存の結果として知られているほどの簡単なものですが, そういうのを調べず私が個人的に見つけた証明を載せているので, もし関連結果 or よりスマートな証明をご存知の方がいらしたら教えていただければ幸いです).


この定理を使えば, 有限加法族に対する条件付き期待値を具体的に構成することが出来ます.
(有限でない場合は無理です)

0 件のコメント:

コメントを投稿

Håstadのスイッチング補題

回路計算量の理論における重要な結果の一つである Håstadのスイッチング補題 を紹介します. 簡潔にいうとこの補題は, 99%の変数をランダムに固定することによってDNFの決定木が小さくなることを主張する結果です. 応用としてparity関数に対する$\mathrm{AC}^0...