問題
http://codeforces.com/contest/557/problem/C
n本の脚がついたテーブルがある。各脚の長さがL[i]で与えられる。このテーブルの脚を何本か切り落としてテーブルをStableな状態にしたい。テーブルがStableであるとは
・一番長い 脚の本数が残っている脚の中で過半数を占めている
ということを指す。また、脚が1本だけのテーブルはStableであるとする。
テーブルの各脚を切り落とすにはコストが必要でそれぞれのコストがd[i]で与えられる。
Stableにするための最小コストを求めよ。
制約としてn<=10^5, L[i]<=10^5, 1<=d[i]<=200
解法
脚の長さでソートしたあと、最長の脚をL[i]にした時の最小コストというのを各iについて求めれば良い。
最長の脚をL[i]にした時の最小コストというのは、
1. L[i]より長い脚を全て切る
2. L[i]より短い脚を、L[i]の脚が過半数になるようにコストが小さい順に切っていく
ことによって得られる。
1はコストの累積和をあらかじめ計算しておけば簡単に求められる。
2は今脚L[i]をみている時に、それまでみていた脚の中でコストjの脚が何本あるかというヒストグラムを保持しておけば高速に求められる(d[i]が200以下であるため)
理論計算機科学 (Thoerotical Computer Science) の色んな定理やアルゴリズムを紹介していきます. 基本的には日本語の資料がほとんどないような知見を解説していきます.
登録:
コメントの投稿 (Atom)
Håstadのスイッチング補題
回路計算量の理論における重要な結果の一つである Håstadのスイッチング補題 を紹介します. 簡潔にいうとこの補題は, 99%の変数をランダムに固定することによってDNFの決定木が小さくなることを主張する結果です. 応用としてparity関数に対する$\mathrm{AC}^0...
-
0. 概要 本記事では ランダムグラフ理論の動機と応用 ランダムグラフ理論のさわり ランダムグラフの面白い定理 について書きます. 1. ランダムグラフ理論の動機と応用 ランダムグラフ理論の主な動機としては 「とある性質Pを満たすグラフ...
-
0. 概要 グラフマイナー定理とは 有限グラフの全体は, マイナー順序によってよい擬順序になっている (well-quasi-ordered) という定理です. ...さてこれは何を言ってるんでしょうか. 本記事では現代のグラフ理論において最も重要な定理の一つで...
-
1. 全点対最短経路問題の計算量の外観 グラフ $G$ が与えられたときに 全点対最短経路 ( APSP : all pair shortest paths)を求めたいときがあります. そんなときはほとんどの人がワーシャル・フロイド法または各点ダイクストラなどを使うかと...
0 件のコメント:
コメントを投稿