今回も高次元エクスパンダーに関する記事となります。前回の記事では単体複体の局所エクスパンダー性を定義し、Oppenheimのトリクルダウン定理を紹介しました。今回の記事ではその応用として以下の前回の記事でも紹介した以下の系を証明したいと思います。
理論計算機科学 (Thoerotical Computer Science) の色んな定理やアルゴリズムを紹介していきます. 基本的には日本語の資料がほとんどないような知見を解説していきます. 執筆者: 清水 伸高 https://sites.google.com/view/nobutaka-shimizu/home
2023年3月13日月曜日
高次元エクスパンダー: マトロイドの局所エクスパンダー性
2023年3月6日月曜日
高次元エクスパンダー: 局所エクスパンダー性の定義とOppenheimのトリクルダウン定理
グラフのエクスパンダー性
例: 完全グラフ
単体複体のエクスパンダー性 (局所エクスパンダー)
例: 完全単体複体
Oppenheimのトリクルダウン定理
文献
2023年2月22日水曜日
高次元エクスパンダー: 単体複体とマトロイド
- 部分集合で閉じた集合族を単体複体(または独立性システム)という. 特にマトロイドは単体複体の特殊ケースである.
- グラフに対して定義されるエクスパンダー性という性質を単体複体に拡張する.
- マトロイドの独立集合族はそのエクスパンダー性を満たす.
- 飛び道具を使うと基上のランダムウォークのrapid mixingが言えてMCMCが可能になる.
単体複体
- $w_k(\sigma) = \sum_{\tau\in X(k+1),\tau\supset \sigma} w_{k+1}(\tau)$
例1. マトロイド
例2. マトロイド交叉
2023年2月5日日曜日
ロバストPCPとPCP of Proximity
1. 定義の準備
- $x\in L$ならばあるオラクル$\pi$が存在して$V^\pi(x)=1$.
- $x\not\in L$ならば任意のオラクル$\pi$に対して$V^\pi(x)=0$.
- 任意の$x\in L$に対してあるオラクル$\pi$が存在して$\Pr[V^\pi(x)=1]=1$.
- ある定数$s>0$が存在して, 任意の$x\not\in L$と任意のオラクル$\pi$に対して$\Pr[V^\pi(x)=0]\geq s$.
- 任意の$n\in\mathbb{N}$, $x\in\{0,1\}^n$に対して$V^\pi(x)$は高々$q(n)$回のオラクルアクセスを行い, 高々$r(n)$ビットのランダムビットを使う.
2. PCP検証者と制約充足問題
- 任意の$x\in L$に対してある$\pi$が存在して全ての$S\in\mathcal{S}$に対して$D_S(\pi|_S)=1$.
- 任意の$x\not\in L$と任意の$\pi$に対して$\Pr_S[D_S(\pi|_S)=0]\geq s$. すなわち, $D_S(\cdot)$が充足されないような$S$が$s\cdot |\mathcal{S}|$個ある.
- $|\mathcal{S}|=2^r$かつ$|S|\leq q$である (つまり$\mathcal{S}$上一様ランダムに選ぶときに長さ$r$のランダムビットを使う).
3. PCP検証者のロバスト性
- (条件2') ある定数$s_1,s_2>0$が存在して任意の$x\not\in L$に対して$\Pr_S[\mathrm{dist}(\pi|_S,D_S^{-1}(1))\geq s_1]\geq s_2$.
4. PCP of Proximity (PCPP)
- $D(x)=1$ならば, ある$\pi$が存在して$\Pr[V^{x,\pi}(D)=1]=1$.
- $\mathrm{dist}(x,D^{-1}(1))\geq c_1$ならば$\Pr[V^{x,\pi}(D)=0]\geq c_2$.
- 任意の$n\in\mathbb{N}$, $x\in\{0,1\}^n,D$に対して$V^{x,\pi}(D)$は高々$q(n)$回のオラクルアクセスを行い, 高々$r(n)$ビットのランダムビットを使う.
5. ロバストなPCP検証者とPCPP検証者の合成
- 2節で説明したように$V_0$をCSPのインスタンス$(D_S)_{S\in\mathcal{S}}$と同一視します. ただし各$|S|=Q$です. $V_0$を走らせたときに得られるランダムな$S\sim\mathcal{S}$に対して関数$D_S$を考えます.
- ペア言語$(D_S,\pi|_S)$に対してPCPP検証者を走らせます. ここで$\pi|_S$は証明として扱います.
- $x\in L$ならば全ての$S\in\mathcal{S}$に対して$D_S(\pi|_S)=1$となるため, PCPP検証者も必ず$1$を出力します.
- $x\not\in L$ならば, ロバスト性より確率$s_2$で$\Pr_{S\sim\mathcal{S}}[D_S(\pi|_S)=0]\geq s_1$となります. この事象で条件づけたとき, $c_1=s_1$の仮定より, 確率$c_2$でPCPP検証者は$0$を出力します. すなわち確率$s_2c_2$で上記の検証者は$0$を出力します.
6. まとめ
参考文献
2023年2月4日土曜日
モーメント母関数を使わないChernoff boundの証明
Chernoff boundは, 独立な確率変数$X_1,\dots,X_n$の和$X_1+\dots+X_n$が期待値から外れる確率が$n$に関して指数的に小さくなることを主張する不等式です. Chernoff boundの証明はモーメント母関数$\mathbf{E}[\exp(\lambda X)]$の評価し, それとマルコフの不等式を組み合わせることで与えられます (例えばこのページ参照)
参考文献
R. Impagliazzo and V. Kabanets, Constructive Proofs of Concentration Bounds, RANDOM2010.
2022年7月4日月曜日
combinatorial designの構成
- 各$S\in\mathcal{S}$に対して$|S|=n$.
- 各$S\neq T\in \mathcal{S}$に対して$|S\cap T|\leq d$.
参考文献
2022年4月19日火曜日
ランダム行列の行列積 part 3
Part1, Part2に引き続き, 有限体$\mathbb{F}_q$上の二つの独立な一様ランダムな行列$A,B\sim\mathbb{F}_q^{n\times n}$が与えられた時に積$AB$を計算せよという問題は最悪計算量 (任意の与えられた$A,B$に対して$AB$を計算する時の計算量) とほぼ一致することを見ました. 具体的にはPart1,2で以下の二つの定理を証明しました.
- 定理1では$\mathcal{A}$の成功確率は$0.75$以上でなければ意味をなさない.
- 定理2では$\mathbb{F}_q$のサイズが大きくなければならない.
- $v_1,\dots,v_k\sim\mathbb{F}_q^n$を一様ランダムに生成する.
- $v_{k+1},\dots,v_n$をそれぞれ$v_1,\dots,v_k$のランダムな線形結合とする (結合の各係数が$\mathbb{F}_q$上一様ランダム).
- $v_1,\dots,v_n$を並べた行列を$R_k$として出力する.
- $A\in D$を満たす任意の入力$(A,B)$に対して$AB$を計算するアルゴリズム$\mathcal{A}_1$を構成する.
- $\mathcal{A}_1$をサブルーチンとして呼び出すことで$A\not D$に対しても$AB$を計算できるアルゴリズム$\mathcal{A}_2$を構成する.
- $R_k$と$S_1,S_2,S_3\sim \mathbb{F}_q^N$をサンプリングし, $S_4=S_1+S_2-S_3-(B+R_k)$とする.
- $AR_k$を計算する ($R_k$のランクが小さくサンプリングした時に線形結合もわかっているので$O(kn^2)$時間で計算できる).
- $C=\mathcal{A}(A,S_1)+\mathcal{A}(A,S_2)-\mathcal{A}(A,S_3)-\mathcal{A}(A,S_4)-AR_k$とする. $AB=C$かどうかをFreivaldのアルゴリズムで確認し, Yesならば出力. そうでなければ最初のステップに戻る.
- $R_k$と$S'_1,S'_2,S'_3\sim \mathbb{F}_q^N$をサンプリングし, $S_4=S_1+S_2-S_3-(A+R_k)$とする.
- $R_kB$を計算する ($R_k$のランクが小さくサンプリングした時に線形結合もわかっているので$O(kn^2)$時間で計算できる).
- $C=\mathcal{A}_1(S_1,B)+\mathcal{A}_1(S_2,B)-\mathcal{A}_1(S_3,B)-\mathcal{A}(S_4,B)-R_kB$とする. $AB=C$かどうかをFreivaldのアルゴリズムで確認し, Yesならば出力. そうでなければ最初のステップに戻る.
アルゴリズムの理論研究の最高峰とは?
競プロで道具として用いられる様々な賢いアルゴリズムやデータ構造の多くは, 非常に賢い研究者たちによって発見されており, ほとんどは理論計算機科学の論文として国際学会の会議録や学術雑誌の形として出版されています. ここではアルゴリズム系の研究論文がよく出てくる様々な国際会議を紹介し...
-
競プロで道具として用いられる様々な賢いアルゴリズムやデータ構造の多くは, 非常に賢い研究者たちによって発見されており, ほとんどは理論計算機科学の論文として国際学会の会議録や学術雑誌の形として出版されています. ここではアルゴリズム系の研究論文がよく出てくる様々な国際会議を紹介し...
-
概要 焼きなまし法 は遺伝的アルゴリズムなどと並ぶ最適化問題の発見的解法の一つとして有名であり, 競技プログラミングの文脈ではマラソン(厳密解を求めるのが困難とされる一つの最適化問題に長時間取り組み最も最適値に近い解を得るという種目) においては常套手段の一つとして用いられていま...
-
0. 概要 本記事では ランダムグラフ理論の動機と応用 ランダムグラフ理論のさわり ランダムグラフの面白い定理 について書きます. 1. ランダムグラフ理論の動機と応用 ランダムグラフ理論の主な動機としては 「とある性質Pを満たすグラフ...