理論計算機科学 (Thoerotical Computer Science) の色んな定理やアルゴリズムを紹介していきます. 基本的には日本語の資料がほとんどないような知見を解説していきます. 執筆者: 清水 伸高 https://sites.google.com/view/nobutaka-shimizu/home
2021年2月22日月曜日
The 123 Theorem
2021年2月15日月曜日
ランダム正則グラフの sandwich conjecture
ランダム正則グラフ理論において有名な sandwich conjecture と呼ばれる予想があるのですが, 最近この予想に大きな進展[3,4]が見られたので紹介します. このトピックは私が修士の頃から論文を読んで追っていたトピックなので, 今回の進展をもたらした論文の登場は個人的にはかなり衝撃的でした.
1. ランダム正則グラフとErdős–Rényiグラフ
1.1. 定義
$n$ 頂点 $d$-正則の頂点ラベル付きグラフ全体の集合から一様ランダムに取り出したグラフをランダム$d$-正則グラフと呼び, $G_{n,d}$ で表します. また, $n$頂点の各頂点のペアを独立に確率$p$で辺で引いて得られるランダムなグラフを Erdős–Rényiグラフと呼び, $G(n,p)$ で表します. $G(n,p)$の基本的な性質などは以前の記事を参照してください.
1.2. ランダムグラフの解析
ランダムグラフの解析をする上でそのランダムグラフの生成モデルに対する考察が不可欠です. たとえば,
$p=o(n^{-1})$ に対して $G(n,p)$ は確率 $1-o(1)$ で三角形を含まない
という事実が知られていますが, これは, $X$ を $G(n,p)$内に含まれる三角形の個数と定めたときに, Markovの不等式より
$\Pr[X\geq 1] \leq \mathbb{E}[X] = \binom{n}{3}p^3 \leq (np)^3 = o(1)$
となることから従います. $G(n,p)$を考えると$\mathbb{E}[X]$の期待値が非常に計算しやすいためにこのような簡単に証明できるわけです.
それでは, $G_{n,d}$ に含まれる三角形の個数 $X$ に対して $\mathbb{E}[X]$ を求める時はどのようにすれば良いでしょうか? $G(n,p)$の場合は各辺が独立に出現していたので簡単に $\mathbb{E}[X]$ を求められましたが, $G_{n,d}$ はそうとはいきません.
実は, $G_{n,d}$ には configuration model と呼ばれる生成モデルが知られていて, これを使えば $2^{O(d^2)} nd$ 時間でランダム $d$-正則グラフを生成することができます. 技術的な詳細は省きますが, このconfiguration model に基づけば $d=d(n)$が $n$ に依存しない定数ならば $G_{n,d}$ のさまざまな構造的性質を用意に解析することができます. 例えば, $d$が定数のときは $n\to\infty$ の漸近で三角形の個数$X$ はポアソン分布に従うことが証明できます. また, $d=d(n)$ が $o(\sqrt{\log n})$ くらいまでならなんとかできることもありますが, 例えば $d=(1+o(1))n^{1/3}$ などの場合は難しくなります.
$d=d(n)$ が大きいときの$G_{n,d}$の生成はそれ自体が一つの研究トピックになるほど難しい問題になっていて, 例えば $d=o(n^{1/2})$ に対して $G_{n,d}$ を $O(nd^3)$ 時間でサンプリングする論文がFOCS15に採択されています[6]. このトピックは多くの論文がありますが, 大体は switching method と呼ばれる手法に基づいたものになっていて, この手法を考えることで$G_{n,d}$ の解析を (時にはかなりアドホックな発想も必要になりつつも) 行うことができます ([2]の10章参照). しかしながら switching method を以てしても $d=o(n^{1/2})$ などの条件を課す必要があります.
すなわち, $d=d(n)$ が大きくなるにつれて$G_{n,d}$の生成と解析は困難なものになっていきます.
1.3. 構造的類似性
$G(n,p)$ の平均次数 $np$ が $np=d=\omega(\log n)$ を満たすとき, $G_{n,d}$と近い構造を持つであろうことが以下の議論から推察できます: まず, $G(n,p)$の頂点 $v$ を固定しその次数 $\deg(v)$ を考えます. この値は$G(n,p)$ がランダムに生成されるので確率変数となっていますが, $\deg(v)=\sum_{u\in V\setminus \{v\}} \mathbb{1}_{uv\in E}$ と書けてこれは独立確率変数の和になっているため, 期待値 $(n-1)p\approx np$ に集中します. 具体的には, Chernoff bound (補足の章の補題A.1参照) とUnion boundを組み合わせると, 任意の$t>0$に対し$$ \Pr[\forall v\in V, |\deg(v)-(n-1)p|\geq t] \leq 2n\exp\left(-\frac{t^2}{2(n-1)p+2t/3}\right)$$が示せます. 特に, $np=\omega(\log n)$ が成り立つときに $t=10\sqrt{np\log n}$ を代入すると, 非常に高い確率で, 全ての頂点の次数が $np\pm 10\sqrt{np\log n}$ の範囲におさまることが示せます. この議論から, $G(n,p)$ は "ほぼ" $(np)$-正則グラフとみなすことができるので, $np=d$のときは $G(n,p)$と$G_{n,d}$は似た構造的性質を持つことが予想されます. 実際, 彩色数や最大クリークのサイズなどは漸近的にほぼ同じ値を持つことが知られています.
(*) あくまでもこの類似性は $d=np$ が大きい場合にのみ成り立つことに注意してください. 例えば $d=np=3$ のとき, $G_{n,d}$ は確率 $1-o(1)$ で連結である一方で $G(n,p)$ は確率 $1-o(1)$ で非連結です.
2. Sandwich conjecture
1章で述べた類似性をちゃんと議論した研究が幾つかあります [1,3,4,5]. 一番最初にこの類似性を研究したのは Kim & Vu [5] です. 彼らの定理を述べるために, $\mathcal{G}(n,p)$ を $G(n,p)$ の分布, $\mathcal{G}_{n,d}$ を $G_{n,d}$ の分布とし, $X\sim \mathcal{G}$ と書いた時は確率変数 $X$ は分布$\mathcal{G}$に従うことを意味します. また, 次の定理ではランダムグラフのカップリングについて考えていきます. カップリングの定義などについては補足A.2を参照ください.
定理1 (Informal; Theorem 2 of [5]).
定理1の内容はinformalなもの (特に $p_2$ には実際にはもう少し条件が設定されている) であることに注意してください. 厳密なステートメントを知りたい方は元論文[5]を参照してください.
定理1から, $G_{n,d}$ は $d$ が定理1の条件を満たす場合は $p\approx d/n$ に対し $G(n,p)$ を部分グラフとして含むということが従います. 例えばこの $G(n,p)$ が直径$\leq 10$ であったならば, これを含む $G_{n,d}$ も直径$\leq 10$ になることが直ちに従います. より一般的に, 辺の追加における単調性を持つような性質を$G_{n,d}$が持つという証明をしたい場合は対応する $G(n,p)$ で考えれば良いという議論になるので, ランダム正則グラフの構造的性質の証明が一気にしやすくなるわけです.
その一方で, (2)の結果では単に $G(n,p_2)\setminus G_{n,d}$ の最大次数が抑えられるということしか主張しないので, $G(n,p_2)$が$直径>10$であることが言えたとしてもそこから$G_{n,d}$が直径$>10$になることが従うわけではありません. つまり, 定理1には
予想 (Sandwich conjecture, Conjecture 1 of [5]).
3. Sandwich conjecture 解決への進展
Sandwich conjectureに対する進展を簡単に紹介していきます.
・Kim & Vu [5] では上にあげた二つの問題点を残していました.
・Dudek, Frieze, Ruciński, and Šileikis [1] は, $d=\omega(\log n)$ かつ $d=o(n)$ ならば, ある$p_1=(1-o(1)) d/n$ に対して 定理1 の(1) の条件を満たすようなカップリングがあるということを示しています. 実際には[1]ではランダムグラフを一般化したランダムハイパーグラフを考えてカップリングの存在性を証明しています. ランダムグラフの本[2]の10章にこの結果の説明と証明が載っているので気になる方は参照ください. 実は, 私が2018年にSODAに通した論文も[1]の結果を用いています.
・Gao, Isaev, and McKay [4] は $d=\omega(n/\sqrt{\log n})$ に対して Conjecture 1 が真であることを主張しています. Kim and Vu の問題点だった逆方向の包含関係を ($d$が非常に大きいという仮定の下ではありますが) 解決したものになっています.
・Gao [3] は $d=\Omega((\log n)^7)$ に対して Conjecture 1 は真であることを主張しています. [4]では $d$ の仮定が非常に強いものでしたが, これをほぼ解決したということになります.
4. まとめ
ランダム正則グラフが研究に出てくるときは, $p=d/n$ に対して $G(n,p)$ を考えると良いです. もし $G(n,p)$ が望ましい性質を持つならば, sandwich conjecture より, 対応する $G_{n,d}$ も同様の性質を持つことが言えるかもしれません.
A. 補足
A.1. 集中不等式
補題A.1 (Chernoff bound; Theorem 21.6 of [2]).
$X_1,\ldots,X_n$を独立な確率変数で, $0\leq X_i\leq 1$ とする (必ずしも同一である必要はない). $S=\sum_{i=1}^n X_i$ とし, その期待値を $\mu$ とする. このとき, 任意の$t>0$に対して以下が成り立つ:
$$\Pr[S\geq \mu+t] \leq \exp\left(-\frac{t^2}{2\mu + 2t/3}\right),$$
$$\Pr[S\leq \mu-t] \leq \exp\left(-\frac{t^2}{2\mu + 2t/3}\right).$$
A.2. カップリング
一般に, 連結性といった, 辺の追加でinvariantなグラフの性質ならどんなものでも命題A.2のような結果が例2のカップリングを使えばすぐに示せます.
参考文献
[1] Andrzej Dudek, Alan Frieze, Andrzej Ruciński, and Matas Šileikis. Embedding the Erdős–Rényi hypergraph into the random regular hypergraph and Hamiltonicity, JCTB, 2017.
[2] Alan Frieze, and Michał Karoński. Introduction to random graphs, Cambridge University Press, 2015
[3] Pu Gao, Kim-Vu's sandwich conjecture is true for all $d=\Omega(\log^7n)$. arXiv, 2020. https://arxiv.org/abs/2011.09449
2020年10月17日土曜日
SODA21に論文が2本通りました (2/2)
論文が SODA21 (Symposium on Discrete Algorithms) に 2本採択されました。
実世界に現れるネットワーク上の解析は、そのネットワーク上での様々な現象 (例えば情報拡散など)の振る舞いを知る上で大きな手がかりとなるため非常に重要な研究トピックの一つとなっており、ランダムウォークなどの手法が用いられることが多々あります。
また、実世界に現れるネットワーク (例えばSNSのネットワーク, 化学反応ネットワーク, 携帯電話の基地のセルラネットワークなど) は時間と共にそのグラフ構造が変化します。
この背景を踏まえ、時間とともに変化する動的なネットワーク上でのランダムウォークを理論的に解析するというのが本論文の主題となります。
実は動的なネットワーク上のランダムウォークは幾つか既存研究があるのですが、それらのほとんどは、辺だけが動的に変化するネットワークを対象としています。
というのも、ネットワーク上でランダムウォークを評価する際には、全頂点を訪問するのに必要な時間 (cover time) 、特定の頂点を訪問するのにかかる時間 (hitting time) 、定常分布に収束するまでにかかる時間 (mixing time) などの指標が基本的です。しかし頂点数が動的に変化するようなネットワークに対してはこれらの指標は定義できない(例えば cover time はどうする?)ため、何を解析していいのかがよく分かりませんでした(つまり、ランダムウォークをしている最中にも頂点が増えていくことがあるので、全頂点を訪問するという概念がよく分かりません)。
本論文では、頂点が動的に増え続けるグラフ (growing graph) 上のランダムウォークを評価する指標として、「時刻1からnまでのランダムウォークでカバーされない頂点の個数」を見ることを提案し、様々なタイプのグラフに対してその個数の期待値の上下界を導出しました。
SODA21に論文が2本通りました (1/2)
2020年10月16日金曜日
ICALP20に論文が通りました。
簡単なアイデア
2020年9月30日水曜日
with high probability について
2020年8月20日木曜日
予想の紹介は止そう
グラフ理論に残されたconjectureを幾つか紹介します。今回の記事は open problem garden を参考にさせて頂き、面白いと感じた予想の中身と簡単なコメントのみを広く浅く紹介させて頂く形になってます。ですのでその予想を思いつくモチベーションとか重要性などは書いていませんので、気になる方は予想の名前で検索して色んな文献を調べてみてください。もし何か間違っている点がありましたらご指摘いただけると幸いです。
1. 5-flow conjecture
登場人物.
・$G=(V,E)$ : ループなしグラフ。ただし多重辺は持ちうる。
・$D$ : $E$の向き付け.
・$\phi:E \to \mathbb{Z}_{\geq 0}$
・$\phi$ が nowhere-zero であるとは、全ての辺 $e\in E$ に対し $\phi(e)\neq 0$ が成り立つことをいう。
・$(D,\phi)$ が $k$-flow であるとは、$\phi$の値域が$\{0,\ldots,k-1\}$であり, 全ての頂点$v\in V$においてキルヒホッフ則を満たすことをいう。つまり、
$$\forall v\in V, \sum_{e\in \delta^{-}(v)} \phi(e) = \sum_{e\in \delta^+ (v)} \phi(e)$$
が成り立つことをいう。ここで$\delta^{-}(v)$ と $\delta^{+}(v)$ は $v$にそれぞれ向き付け$D$において $v$ に入る辺と出る辺の集合である。
Conjecture [Tutte, 1954].
橋を持たない任意のグラフは nowhere-zero な 5-flow を持つ。
コメント.
・橋を持つグラフならnowhere-zeroなフローはない(橋をどちらの向きにしても流量は保存されないから)。
・5ではなく6なら証明されている [Seymour, 81].
2. Cycle Double Cover Conjecture
登場人物.
・$G=(V,E)$: グラフ.
・閉路の多重集合 $[C_1,\ldots,C_m]$ が $G$の cycle double cover であるとは、$G$の全ての辺がちょうど2個の相異なる $C_i$ と $C_j$ に含まれることをいう。
Conjecture [Szekeres, 73][Seymour, 80].
橋を持たない任意のグラフは cycle double cover を持つ。
コメント.
・cycle double cover が多重集合であることには意味があります。例えば $G$ が単なる閉路の場合は多重集合じゃないと予想の反例になってしまいます。
・$G$が橋を持たない平面グラフなら、面の全体 (外面も含む)が cycle double cover になりますね。
・$G$が橋を持つなら、その橋はいかなる閉路にも含まれないので cycle double cover を持ちません。
・「この予想を証明した」と主張する論文が幾つかarXivにあがっています。
3. The Berge-Furkerson Conjecture
登場人物.
・$G$ : 橋を持たない$3$-正則グラフ.
Conjecture [Fulkerson, 71]
$G$には以下を満たす6個の完全マッチング $M_1,\ldots,M_6$ が存在する:
全ての辺はそれぞれ$M_1,\ldots,M_6$のうちちょうど2個に含まれる。
コメント.
・$M_1,\ldots,M_6$ は相異なる必要はありません (例えば$M_1=M_2$でもokです)。
・$G$ は必ず完全マッチングを持ちます (cf. ピーターセンの定理)
・$G$ が 3-辺彩色可能なら、それぞれの色を持つ辺集合を$M_1=M_2, M_3=M_4, M_5=M_6$ とすれば構成できます。
・Fulkerson が初めて提示した予想ですが、元々 Berge がこれに似ているちょっと弱い予想をunpublishながら提示していて、それを元に Fulkerson が提示したものらしいです。
・余談ですが、橋を持たない3正則グラフで3-辺彩色可能でないもののうち最小のグラフがピーターセングラフです。ちなみに色んな予想の反例になることで有名なピーターセングラフに対してもBerge-Fulkerson conjectureは成り立ちます。実際、$M_1,\ldots,M_6$ として次が考えられます。
4. Erdős–Gyárfás Conjecture
Conjecture [Erdős, 97].
全ての次数が3以上の任意のグラフは長さが2ベキの閉路を含む.
コメント.
・示したら$100, 反例を見つけたら$50 貰えるらしい。
・3-連結かつ3-正則な平面的グラフでは成り立つ [Heckman, Krakovski, 13].
・次数2の頂点を許すと反例が簡単に構成できます。例えば
・ピーターセングラフは15頂点で長さ4の閉路を持たないのですが、長さ8の閉路を持ちます。
5. Reconstruction Conjecture.
登場人物.
・$G=(V,E)$ : 多重辺を持ちうるグラフ
・$n$頂点グラフ $G$ に対して, $D(G)$ を多重集合 $[H_1,\ldots,H_n]$ であって各 $H_i$ は $G-v_i$ と同型なラベルなしグラフ と定める。ただし $v_i$ は $G$ の $i$番目の頂点。例えば
Conjecture [Kelly, 57][Ulam, 60].
3つ以上の頂点を持つ二つのグラフ $G,H$ が $D(G)=D(H)$ を満たすならば、$G$ と $H$ は同型.
コメント
・要するに、各頂点を削除した時のグラフの形状をみれば元々のグラフ$G$の形状が復元できる、ということを主張しています。
・2頂点だと多重辺を持つグラフ同士が識別できなくなってしまいます。
・$D(G)$ は $G$ の デッキ (deck) と呼ばれます。
・[Kelly, 57] では $G$ が木である場合にreconstruction conjectureが正しいことを証明しています。
6. The Barnette Conjecture
Conjecture [Barnette, 69].
任意の3-連結, 3-正則, 二部な平面的グラフはハミルトン閉路を持つ.
コメント.
・二部という条件は本質で、二部じゃない場合は反例が [Tutte, 46] で見つかっています(二部の条件を外した時のステートメントは元々は[Tait, 1884]が予想していて、Tutteが反例を見つけたということです。詳しくは Tait's Conjecture を参照)。
・3正則平面的グラフがハミルトン閉路を持つかどうかの判定がすでにNP-completeなのでコンピュータによるチェックは大変ですが、66頂点未満のグラフはこの予想が正しいことが知られています [Holton, Manvel, McKay, 85]。100頂点未満のグラフで確認とかしたら学士論文とかになるんじゃないですかね。
アルゴリズムの理論研究の最高峰とは?
競プロで道具として用いられる様々な賢いアルゴリズムやデータ構造の多くは, 非常に賢い研究者たちによって発見されており, ほとんどは理論計算機科学の論文として国際学会の会議録や学術雑誌の形として出版されています. ここではアルゴリズム系の研究論文がよく出てくる様々な国際会議を紹介し...
-
競プロで道具として用いられる様々な賢いアルゴリズムやデータ構造の多くは, 非常に賢い研究者たちによって発見されており, ほとんどは理論計算機科学の論文として国際学会の会議録や学術雑誌の形として出版されています. ここではアルゴリズム系の研究論文がよく出てくる様々な国際会議を紹介し...
-
概要 焼きなまし法 は遺伝的アルゴリズムなどと並ぶ最適化問題の発見的解法の一つとして有名であり, 競技プログラミングの文脈ではマラソン(厳密解を求めるのが困難とされる一つの最適化問題に長時間取り組み最も最適値に近い解を得るという種目) においては常套手段の一つとして用いられていま...
-
0. 概要 本記事では ランダムグラフ理論の動機と応用 ランダムグラフ理論のさわり ランダムグラフの面白い定理 について書きます. 1. ランダムグラフ理論の動機と応用 ランダムグラフ理論の主な動機としては 「とある性質Pを満たすグラフ...